资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

c语言函数输出杨辉三角形 c语言输出一个杨辉三角

C语言,输出杨辉三角

修改:#include"stdio.h" 

创新互联公司专注于企业成都全网营销推广、网站重做改版、吴起网站定制设计、自适应品牌网站建设、成都h5网站建设购物商城网站建设、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为吴起等各大城市提供网站开发制作服务。

void main()

{

int a[10][10],i,j;

for(i=0;i=9;i++){

a[i][0]=1;//原代码此处需修改,第一位数为1

a[i][i]=1;

}

for(i=1;i=9;i++)

for(j=1;ji;j++)//原代码此处需修改

a[i][j]=a[i-1][j-1]+a[i-1][j];

for(i=0;i=9;i++){

for(j=0;j=i;j++){printf("%5d\t",a[i][j]);}

printf("\n");

}return 0;}

扩展资料:

杨辉三角概述:

1.每个数等于它上方两数之和。

2.每行数字左右对称,由1开始逐渐变大。

3.第n行的数字有n+1项。

4.第n行数字和为2n。

5.第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

6.第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

7.每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。

8.(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

9.将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

10将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位。

以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。

参考资料:杨辉三角-百度百科

用c语言输出杨辉三角

C语言实现输出n层杨辉三角,注意n34时会导致长整型溢出,参考代码如下:

#includestdio.h

int main()

{

int i,j,n;

long a[34]={1};

scanf("%d",n);

if(n34)return 1;

for(i=0;in;i++){

for(j=i;j0;j--)

a[j]=a[j]+a[j-1];

for(j=0;j=i;j++)

printf("%ld ",a[j]);

printf("\n");

}

return 0;

}

用c语言编写程序 输出杨辉三角

程序:

#includestdio.h

int main()

int n,i,j,a[100];

n=10;

printf("  1");

printf("\n");

a[1]=a[2]=1;

printf("%3d%3d\n",a[1],a[2]);

for(i=3;i=n;i++)

{

a[1]=a[i]=1;

for(j=i-1;j1;j--)

a[j]=a[j]+a[j-1];

for(j=1;j=i;j++)

printf("%3d",a[j]);

printf("\n");

}

return 0;

}

应用

与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。例如在杨辉三角中,第3行的三个数恰好对应着两数和的平方的展开式的每一项的系数(性质 8),第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数。

以上内容参考:百度百科-杨辉三角

c语言程序输出杨辉三角形

因为n的值并没有实际的意义,而且,最后一个循环应该是死循环,n的值一直在增加,j永远跟n差1,怎么也跳不出循环


分享文章:c语言函数输出杨辉三角形 c语言输出一个杨辉三角
链接地址:http://cdkjz.cn/article/doeppoj.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220