幂函数的图像:
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:申请域名、网站空间、营销软件、网站建设、海勃湾网站维护、网站推广。
幂函数的性质:
一、正值性质
当α0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0;
二、负值性质
当α0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
扩展资料一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料
幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.
取正值
当α0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0;
取负值
当α0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
取零
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。(x=0时,函数值没意义)
import
mathmath.e**N或import
numpy
as
npnp.e**N。
知识拓展:
1.
在C语言中,10的n次方可以表示为pow(10,
n),其中pow函数在头文件math.h中,所以调用该函数的时候,必须将math.h加进来,即#include
。
2.
原型:extern
float
pow(float
x,
float
y)。
3.
功能:计算x的y次幂。
4.
说明:x应大于零,返回幂指数的结果。
import numpy as np
import matplotlib.pyplot as plt
n = np.linspace(-20,20,200)
y = (1 + 1/n) ** n
plt.plot(n, y)
plt.show()
性质:
1、所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)。
2、当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
3、当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。
4、当a小于0时,a越小,图形倾斜程度越大。
5、显然幂函数无界限。
6、a=0,该函数为偶函数 {x|x≠0}。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据a的奇偶性来确定,即如果同时p为奇数, 则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时p为偶数,则函数的定义域为所有非零实数。
当x为不同的数值时,幂函数的值域的不同情况如下:
1、在x大于0时,函数的值域总是大于0的实数。
2、在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。