1.环境搭建
成都创新互联是一家专业提供酉阳土家族苗族企业网站建设,专注与网站建设、成都网站建设、H5响应式网站、小程序制作等业务。10年已为酉阳土家族苗族众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。
整个项目的结构图
2.编写DetectFaceDemo.java,代码如下:
[java] view plaincopy
package com.njupt.zhb.test;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo");
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath());
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath());
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath());
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1);
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1));
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, image);
}
}
3.编写测试类:
[java] view plaincopy
package com.njupt.zhb.test;
public class TestMain {
public static void main(String[] args) {
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary("opencv_java246");
new DetectFaceDemo().run();
}
}
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png
no jniopencv_objdetect in java.library.path
opencv的相应的dll,没有放到环境变量PATH 所指的目录
1、首先导入模块dlib模块安装其实是比较繁琐的,要认真耐心点,可以参考dlib安装。
2、其次提取人脸特征编码,并获取到人脸五官的位置。
3、最后按步骤敲代码即可为全部代码,即可完成。
Java检测人脸图片是否高清可以通过以下步骤实现。
1、对人脸图片进行图像处理,以提取出图像中的人脸特征。
2、使用支持向量机SVM分类算法,建立一个高清人脸图像与模糊人脸图像的分类模型,用来区分高清图像和模糊图像。
3、将待测人脸图像和模型进行比较,并判断其属于高清图像还是模糊图像。