资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

数据结构—各类‘排序算法’实现(上)-创新互联

     数据结构中的排序算法分为比较排序,非比较排序。比较排序有插入排序、选择排序、交换排序、归并排序,非比较排序有计数排序、基数排序。下面是排序的具体分类:

创新互联专注于企业成都全网营销推广、网站重做改版、甘泉网站定制设计、自适应品牌网站建设、H5网站设计电子商务商城网站建设、集团公司官网建设、外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为甘泉等各大城市提供网站开发制作服务。

数据结构—各类‘排序算法’实现(上)

1.直接排序

        主要思想:使用两个指针,让一个指针从开始,另一个指针指向前一个指针的+1位置,两个数据进行比较

void InsertSort(int* a, size_t size)
{
     assert(a);
     for (size_t i = 0; i < size - 1; i++)
     {
          int end = i;
          int tmp = a[end + 1];
          while (end >= 0 && a[end] > tmp)
          {
               a[end + 1] = a[end];
               --end;
          }
          a[end + 1] = tmp;   //当进行到a[end]>tmp的时候,将tmp插入到a[end+1]的位置上
     }
}

2.希尔排序

      主要思想:给定间距gap,将间距上的数据进行排序,然后将间距进行缩小,当间距为1时,就相当于进行直接插入排序,这就避免了,直接排序有序的情况,提高排序的效率

void shellSort(int* a, size_t size)
{
     assert(a);
     int gap = size;
     while (gap > 1)    //当gap为2或者1时,进入循环中gap = 1,相当于进行直接插入排序 
     {
          gap = gap / 3 + 1;
          for (size_t i = 0; i < size - gap; i++)
          {
               int end = i;
               int tmp = a[end + gap];
               while (end >= 0 && a[end] > tmp)
               {
                    a[end + gap] = a[end];
                    end -= gap;
               }
               a[end + gap] = tmp;
          }
     }
}

3.选择排序

       主要思想: 每一次从所要排序的数据中选出大的数据,放入到数组的最后位置上,用数组的下标来控制放置的位置,直到排好顺序

void selectSort(int* a, size_t size)
{
     assert(a);
     for (size_t i = 0; i < size - 1; i++)
     { 
          int max = a[0];
          int num = 0;
          for (size_t j = 0; j < size - i; j++)
          {
               if (max < a[j])
               {
                    max = a[j];
                    num = j;
               }
          }
          swap(a[num], a[size - i - 1]);
     }
}

    选择排序优化后的思想:每一次可以选两个数据,大数据和最小数据,将大数据从数组的大位置开始放置,最小数据从数组的最小位置开始放置,能够提高排序的效率

void selectSort(int* a, size_t size)
{
     int left = 0;
     int right = size - 1;
     
     while (left < right)
     { 
          for (int i = left; i < right; i++)
          {
               int min = a[left];
               int max = a[right];
               if (a[i] < min)
               {
                    min = a[i];
                    swap(a[i], a[left]);
               }
               if (a[i] > max)
               {
                    max = a[i];
                    swap(a[i], a[right]);
               }
          }
          ++left;
          --right;
     }
}

4.堆排序

       主要思想:创建一个大堆进行排序,堆排序只能排序数组,通过数组的下表来计算数据在堆中的位置,将大堆的根节点与最后一个叶子节点进行交换,然后对堆中剩下的数据进行调整,直到再次成为大堆。

void AdjustDown(int* a, size_t root, size_t size)
{
     assert(a);
     size_t parent = root;
     size_t child = parent * 2 + 1;
     while (child < size)
     {
          if (child + 1 < size && a[child + 1] > a[child])
          {
               ++child;
          }
          if (a[child] > a[parent])
          {
               swap(a[child], a[parent]);
               parent = child;
               child = parent * 2 + 1;
          }
          else
          {
               break;
          }
     }
}

void HeapSort(int* a, size_t size)
{
     for (int i = (size - 2) / 2; i >= 0; --i)   
      //从最后一个父亲节点开始建堆(使用i>=0时,必须使用int类型)
     {
          AdjustDown(a, i, size);
     }
     for (size_t i = 0; i < size; i++)     //进行排序,大的数往下放
     {
          swap(a[0], a[size - i - 1]);
          AdjustDown(a, 0, size - i - 1);
     }
}

5.快速排序

方法一:

       主要思想:先选定一个key值(一般是数组的头元素或者尾元素),这里选定数组的尾元素,给定两个指针begin和end,begin指针指向数组的头位置,end指针指向倒数第二个位置,begin指针找比key值大的数据,end指针找较key值小的数据,如果begin指针还没有和end相遇,则将a[begin]和a[end]数据进行交换。当begin和end指针相遇,则将key值和a[begin]进行交换。

数据结构—各类‘排序算法’实现(上)

int partSort(int* a, int left, int right)
{
     assert(a);
     int key = a[right];    //选最右端的数据作为key
     int begin = left;
     int end = right - 1;
     while (begin < end)
     {
          while (begin < end && a[begin] <= key)    //begin找比key大的数据
          {
               ++begin;
          }
          while (begin < end && a[end] >= key)    //end找比key小的数据
          {
               --end;
          }
          if (begin < end)
          {
               swap(a[begin], a[end]);
          }
     }
     if (a[begin] > a[right])      //只有两个元素的情况
     {
          swap(a[begin], a[right]);
          return begin;
     }
     else
     {
          return right;
     }
     return begin;
}

void QuickSort(int* a, int left, int right)
{
     assert(a);
     if (left >= right)
     {
          return;
     }
     int point = partSort(a, left, right);
     QuickSort(a, left, point-1);
     QuickSort(a, point+1, right);
}

方法二:

       主要思想:挖坑法实现,将最右边的数据用key进行保存,可以说这时候最后的位置相当于一个坑,能够对数据进行任意的更改,将左指针找到的较key值大的数据赋值到key的位置上,这时候左指针指向的位置可以形成一个坑,这时再用右指针找较key值小的数据,将其赋值到刚才的坑中,这时右指针指向的位置也就行成坑。最后当两个指针相遇时,将key值赋值到坑中,这时左边的数据都小于key值,右边的数据都大于key值。

数据结构—各类‘排序算法’实现(上)

        其中,若选取数组中大或者最小的数据为key值,这是快速排序的最坏情况,利用三数取中的方法可以解决这种问题,取数组中头元素、尾元素、和中间元素的最中间大小的数据作为key值,就能够避免这样的情况。

//三数取中法
int GetMidIndex(int* a, int left, int right)
{
     assert(a);
     int mid = (left + right) / 2;
     if (a[left] < a[right])
     {
          if (a[mid] < a[left])    //a[mid] < a[left] < a[right]
          {
               return left;
          }
          else if (a[mid] > a[right])   //a[left] < a[right] < a[mid]
          {    
               return right;
          }
          else     //a[left] < a[mid] <  a[right]
          {
               return mid;
          }
     }
     else
     {
          if (a[mid] < a[right])       //a[left] > a[right] > a[mid]
          {
               return right;
          }
          else if (a[mid] > a[left])    //a[right] < a[left] < a[mid] 
          {
               return left;
          }
          else    //a[right] < a[mid] < a[left]
          {
               return mid;
          }
     }
}

int partSort1(int* a, int left, int right)
{
     int index = GetMidIndex(a, left, right);
     swap(a[index], a[right]);    //将中间的数据与最右边的数据进行交换,然后将最右边数据赋值给key
     int key = a[right];  //首先将最右边的位置作为第一个坑
     int begin = left;
     int end = right;
     while (begin < end)
     {
          while (begin < end && a[begin] <= key)  //从左往右找较key大的数据
          {
               ++begin;
          }
          a[end] = a[begin];   //将第一个坑进行覆盖,同时空出新的坑
          while (begin < end && a[end] >= key)   //从右往左查找较key小的数据
          {
               --end;
          }
          a[begin] = a[end];   //将第二个坑进行覆盖,同时空出新的坑
     }
     if (begin == end)
     {
          a[end] = key;   //key现在的位置,左边的数据都较key值小,右边的数据豆角key值大
          return begin;
     }
}

void QuickSort1(int* a, int left, int right)
{
     assert(a);
     if (left > right)
     {
          return;
     }
     int ret = partSort1(a, left, right);
     QuickSort1(a, left, ret - 1);
     QuickSort1(a, ret + 1, right);
}

方法三:

       主要思想:选定最右边的数据为key,将cur指针指向数组的头元素,cur指针找较key值小的数据,prev指针指向cur-1的位置,当cur找到较小的数据,先进行prev++,若此时cur=prev,cur继续找较小的数据,直到cur!=prev,就将a[prev]和a[cur]进行交换,直到cur指向数组的倒数第二个元素,这时将key值和a[++prev]进行交换。

int partSort2(int* a, int left, int right)
{
     int key = a[right];
     int cur = left;
     int prev = left - 1;
     while (cur < right)
     {
          if (a[cur] < key && ++prev != cur)
          {
               swap(a[cur], a[prev]);
          }
          ++cur;
     }
     swap(a[right], a[++prev]);
     return prev;
}

void QuickSort2(int* a, int left, int right)
{
     assert(a);
     if (left > right)
     {
          return;
     }
     int ret = partSort2(a, left, right);
     QuickSort2(a, left, ret - 1);
     QuickSort2(a, ret + 1, right);
}

       优化:当区间gap<13,采用直接排序效率会高于都采用快速排序,能够减少程序压栈的开销

//核心代码
void QuickSort1(int* a, int left, int right)
{
     assert(a);
     if (left > right)
     {
          return;
     }
     int gap = right - left + 1;
     if (gap < 13)
     {
          InsertSort(a, gap);
     }
     int ret = partSort1(a, left, right);
     QuickSort1(a, left, ret - 1);
     QuickSort1(a, ret + 1, right);
}

——如果不使用递归,那应该怎样实现快速排序算法呢?(利用栈进行保存左边界和右边界)

//核心代码
void QuickSort_NonR(int* a, int left, int right)
{
     assert(a);
     stack s;
     if (left < right)    //当left < right证明需要排序的数据大于1
     {
          s.push(right);
          s.push(left);
     }
     while (!s.empty())
     {
          left = s.top();
          s.pop();
          right = s.top();
          s.pop();
          if (right - left < 13)
          {
               InsertSort(a, right - left + 1);
          }
          else
          {
               int div = partSort1(a, left, right);
               if (left < div - 1)
               {
                    s.push(div - 1);
                    s.push(left);
               }
               if (div + 1 < right)
               {
                    s.push(right);
                    s.push(div + 1);
               }
          }
     }
}

6.归并排序

       主要思想:与合并两个有序数组算法相似,需要借助一块O(N)的空间,将一个数组中的元素分为两部分,若这两个部分都能够有序,则利用合并的思想进行合并,过程一直进行递归

void _Merge(int* a, int* tmp, int begin1, int end1, int begin2, int end2)
{
     int index = begin1;       //用来标记tmp数组的下标
     while (begin1 <= end1 && begin2 <= end2)
      //先判断begin1和begin2的大小,然后将小的数据从begin到end拷贝到tmp上,
      //出循环的条件begin1>=end1 || begin2 >= end2
     {
          if (a[begin1] < a[begin2])  
          {
               tmp[index++] = a[begin1++];
          }
          else
          {
               tmp[index++] = a[begin2++];
          }
     }
     //将剩下的begin1或者begin2在进行拷贝
     while (begin1 <= end1)   
     {
          tmp[index++] = a[begin1++];
     }
     while (begin2 <= end2)
     {
          tmp[index++] = a[begin2++];
     }
}

void _MergeSort(int* a, int* tmp, int left, int right)
{
     if (left < right)
     {
          int mid = (right + left) / 2;
          _MergeSort(a, tmp, left, mid);
          _MergeSort(a, tmp, mid + 1, right);
          _Merge(a, tmp, left, mid, mid + 1, right);   //借助tmp进行排序
          //将tmp上面排序后的数据再拷贝到上层的数组中
          for (int i = left; i <= right; ++i)
          {
               a[i] = tmp[i];
          }
     }
}

void MergeSort(int* a, int size)   //归并排序数组
{
     assert(a);
     int* tmp = new int[size];    //开辟N个空间
     int left = 0;
     int right = size - 1;
     _MergeSort(a, tmp, left, right);
     delete[] tmp;
}

      上面主要介绍的为各个比较排序的算法实现,非比较排序(计数、基数)在下篇:“数据结构—各类‘排序算法’实现(下)”

创新互联www.cdcxhl.cn,专业提供香港、美国云服务器,动态BGP最优骨干路由自动选择,持续稳定高效的网络助力业务部署。公司持有工信部办法的idc、isp许可证, 机房独有T级流量清洗系统配攻击溯源,准确进行流量调度,确保服务器高可用性。佳节活动现已开启,新人活动云服务器买多久送多久。


分享标题:数据结构—各类‘排序算法’实现(上)-创新互联
链接地址:http://cdkjz.cn/article/dodejj.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220