一:学会正确使用numpy scipy。 numpy scipy写好的绝不自己写,比如矩阵运算等操作,pylab的实现还算不错。各种函数都有,尽量使用他们可以避免初学者大部分的速度不足问题。因为这些函数大部分都是预编译好的。
站在用户的角度思考问题,与客户深入沟通,找到曹县网站设计与曹县网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计制作、成都网站设计、企业官网、英文网站、手机端网站、网站推广、国际域名空间、雅安服务器托管、企业邮箱。业务覆盖曹县地区。
根据我几年前的测试,python的矩阵运算速度并不慢,(因为你运行的是动态链接库里面的函数而不是脚本)比mathematica快,和matlab持平。
大部分新手不擅长看文档啥都自己造轮子是不好的。当然老手把效率写的比开源库高也不算啥新闻,毕竟有对特定程序的优化
二:减少for的使用,多使用向量化函数,np.vectorlize可以把函数变成对数组逐元素的操作,比for效率高几个华莱士。
三:对内存友好,操作大矩阵的时候减少会引起整矩阵对此copy的操作
四:系统最慢的大部分时候是io,包括上面说的内存操作和频繁的读入读出以及debug输出。避免他们,在需要实时处理的时候引入类似于gpu的pipeline管线机制或者使用灵活的多线程编程可以起到奇效。
五:matplotlib的绘图效率并不高明,在使用交互绘图(plt.ion)的时候减少不必要的刷新率。
1. Pandas.apply() – 特征工程瑰宝
Pandas 库已经非常优化了,但是大部分人都没有发挥它的最大作用。想想它一般会用于数据科学项目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征创造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函数。
在Pandas.apply()中,可以传递用户定义功能并将其应用到Pandas Series的所有数据点中。这个函数是Pandas库最好的扩展功能之一,它能根据所需条件分隔数据。之后便能将其有效应用到数据处理任务中。
2. Pandas.DataFrame.loc – Python数据操作绝妙技巧
所有和数据处理打交道的数据科学家(差不多所有人了!)都应该学会这个方法。
很多时候,数据科学家需要根据一些条件更新数据集中某列的某些值。Pandas.DataFrame.loc就是此类问题最优的解决方法。
3. Python函数向量化
另一种解决缓慢循环的方法就是将函数向量化。这意味着新建函数会应用于输入列表,并返回结果数组。在Python中使用向量化能至少迭代两次,从而加速计算。
事实上,这样不仅能加速代码运算,还能让代码更加简洁清晰。
4. Python多重处理
多重处理能使系统同时支持一个以上的处理器。
此处将数据处理分成多个任务,让它们各自独立运行。处理庞大的数据集时,即使是apply函数也显得有些迟缓。
关于优化Python编程的4个妙招,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。
一、作用不同
1、intvar():属于Tkinter下的对象。用于处理整型。
2、stringvar():StringVar并不是python内建的对象,而是属于Tkinter下的对象。
二、值变化不同
1、intvar():不需要跟踪变量的值的变化。
2、stringvar():需要跟踪变量的值的变化,以保证值的变更随时可以显示在界面上。
三、特点不同
1、intvar():intVar类型调用get函数时,先将变量转变成了tuples类型的数据。
2、stringvar():StringVar类型调用set函数时,先将变量转变成了tuples类型的数据。实际上调用set函数之前就直接使用Tuples类型的数据.
参考资料来源:百度百科-Tkinter
参考资料来源:百度百科-Python
Python发展到现在,其实不简单了。 说简单,只是你自己不够与时俱进,掌握的都是老式三板斧而已。所以,知识需要不断更新,才能弥补自己的盲点,以上就是本文的全部内容,希望能大家的学习或者工作带来一定的帮助。
import CV2
import copy
import numpy as np
import random
使用的是pycharm
因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了
要求是灰度图像,所以第一步先把图像转化成灰度图像
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的
def chng(a):
if a 255/3:
b = a/2
elif a 255/3*2:
b = (a-255/3)*2 + 255/6
else:
b = (a-255/3*2)/2 + 255/6 +255/3*2
return b
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
下一步是直方图均衡化
# histogram equalization
def hist_equal(img, z_max=255):
H, W = img.shape
# S is the total of pixels
S = H * W * 1.
out = img.copy()
sum_h = 0.
for i in range(1, 255):
ind = np.where(img == i)
sum_h += len(img[ind])
z_prime = z_max / S * sum_h
out[ind] = z_prime
out = out.astype(np.uint8)
return out
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)
不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了
用到了random.gauss()
percentage是噪声占比
def GaussianNoise(src,means,sigma,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)
if NoiseImg[randX, randY] 0:
NoiseImg[randX, randY]=0
elif NoiseImg[randX, randY]255:
NoiseImg[randX, randY]=255
return NoiseImg
def PepperandSalt(src,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
if random.randint(0,1)=0.5:
NoiseImg[randX,randY]=0
else:
NoiseImg[randX,randY]=255
return NoiseImg
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
下面开始均值滤波和中值滤波了
就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行
#均值滤波模板
def mean_filter(x, y, step, img):
sum_s = 0
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s += 0
else:
sum_s += img[k][m] / (step*step)
return sum_s
#中值滤波模板
def median_filter(x, y, step, img):
sum_s=[]
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s.append(0)
else:
sum_s.append(img[k][m])
sum_s.sort()
return sum_s[(int(step*step/2)+1)]
def median_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = median_filter(i, j, n, img)
return img1
def mean_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = mean_filter(i, j, n, img)
return img1
完整main代码如下:
if __name__ == "__main__":
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
meanimg3 = mean_filter_go(covereqps, 3)
CV2.imwrite('medimg3.png', meanimg3)
meanimg5 = mean_filter_go(covereqps, 5)
CV2.imwrite('meanimg5.png', meanimg5)
meanimg7 = mean_filter_go(covereqps, 7)
CV2.imwrite('meanimg7.png', meanimg7)
medimg3 = median_filter_go(covereqg, 3)
CV2.imwrite('medimg3.png', medimg3)
medimg5 = median_filter_go(covereqg, 5)
CV2.imwrite('medimg5.png', medimg5)
medimg7 = median_filter_go(covereqg, 7)
CV2.imwrite('medimg7.png', medimg7)
medimg4 = median_filter_go(covereqps, 7)
CV2.imwrite('medimg4.png', medimg4)