代码:
普定ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!
#includelt;stdio.hgt;
int Fib(int n){//自定义函数
if(nlt;0)
return-1;
else if(n==0)
return 0;
else if(n==1)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
int main(){
int num;
printf("请输入要求取的第n项斐波那契数列n=");
if(scanf("%d",num)){
if(numgt;=0){
printf("%d",Fib(num));
}
else
printf("Error!!!");
return 0;
}
return 0;
}
扩展资料:
斐波那契数列排列组合
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1,2,3,5,8,13……所以,登上十级,有89种走法。
类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?
答案是(1/√5)*{[(1+√5)/2]^(10+2)-[(1-√5)/2]^(10+2)}=144种。
求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式
由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。
参考资料:
百度百科——斐波那契数列
#includestdio.h
long func(long n)
{
if(n==0||n==1)return n;
else return func(n-1)+func(n-2);
}
main()
{
long n;
printf("please input n:");
scanf("%ld",n);
printf("the result is %ld",func(n));
}
#include
#define
COL
5
//一行输出5个
long
fibonacci(int
n)
{
//fibonacci函数的递归函数
if
(0==n||1==n)
{
//fibonacci函数递归的出口
return
1;
}
else
{
return
fibonacci(n-1)+fibonacci(n-2);
//反复递归自身函数直到碰到出口处再返回就能计算出第n项的值
}
}
int
main(void)
{
int
i,n;
n=
17;
printf("Fibonacci数列的前%d项\n",
n);
for
(i=0;
i
{
printf("%-10ld",fibonacci(i++));
//调用递归函数并且打印出返回值
if(i%COL==0)
{
//若对COL取余等于0就换行,也就是控制每行输出多少个,
//而COL=10就是每行输出10个
printf("\n");
}
}
printf("\n");
return
0;
}
#includestdio.h
long fun(int i)//递归函数
{
if(i==1||i==2)//递归终止条件
return 1;
else//递归通式
return(fun(i-1)+fun(i-2));
}
int main()
{
int n;
printf("请输入项数:");
scanf("%d",n);
printf("\n斐波那契数列前%d项为:\n",n);
for(int i=1;i=n;i++)
{
printf("%ld\t",fun(i));//调用函数
if(i%5==0)//每输出5项换行
printf("\n");
}
return 0;
}
楼上说的同时执行,我愚见觉得是不对的。应该是先执行bashan(n-1),然后再执行n-2的那句。两个都是分别执行递归到计算出结果后,相加作为
返回值
。
也就是类似一个
二叉树
的
先序遍历
差不多的感觉。比如说,bashan(4)。执行顺序如下
bashan(4),bashan(3),bashan(2)=2
bashan(2)=2
bashan(4)=2-2=0
如果这里不存在异步多线程之类的操作,就应该从左到右,从上到下,按照顺序完成。
int fbnc(int n)
{ if (n1) return (-1); //wrong;
else if (n2) return 1;
else return (fbnc(n-1)+fbnc(n-2));
}