资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

【LeetCode】1760.袋子里最少数目的球-创新互联

袋子里最少数目的球

给你一个整数数组nums,其中nums[i]表示第i个袋子里球的数目。同时给你一个整数maxOperations

创新互联建站网站建设由有经验的网站设计师、开发人员和项目经理组成的专业建站团队,负责网站视觉设计、用户体验优化、交互设计和前端开发等方面的工作,以确保网站外观精美、网站设计、网站建设易于使用并且具有良好的响应性。

你可以进行如下操作至多maxOperations次:

选择任意一个袋子,并将袋子里的球分到 2 个新的袋子中,每个袋子里都有 正整数 个球。
比方说,一个袋子里有 5 个球,你可以把它们分到两个新袋子里,分别有 1 个和 4 个球,或者分别有 2 个和 3 个球。

你的开销是单个袋子里球数目的 大值 ,你想要 最小化 开销。

请你返回进行上述操作后的最小开销。

示例 1
输入:nums = [9], maxOperations = 2
输出:3
解释:
- 将装有 9 个球的袋子分成装有 6 个和 3 个球的袋子。[9] ->[6,3] 。
- 将装有 6 个球的袋子分成装有 3 个和 3 个球的袋子。[6,3] ->[3,3,3] 。
装有最多球的袋子里装有 3 个球,所以开销为 3 并返回 3 。
示例 2
输入:nums = [2,4,8,2], maxOperations = 4
输出:2
解释:
- 将装有 8 个球的袋子分成装有 4 个和 4 个球的袋子。[2,4,8,2] ->[2,4,4,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,4,4,4,2] ->[2,2,2,4,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,2,2,4,4,2] ->[2,2,2,2,2,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,2,2,2,2,4,2] ->[2,2,2,2,2,2,2,2] 。
装有最多球的袋子里装有 2 个球,所以开销为 2 并返回 2 。
示例 3
输入:nums = [7,17], maxOperations = 2
输出:7
提示
  • 1<= nums.length<= 105
  • 1<= maxOperations, nums[i]<= 109
算法一:二分查找 思路
  • 首先给出一个定义:「给定花销 mid , 能否在 maxOperations 次操作内使得盒子里所有的数都小于等于 mid」

  • mid 越小,所需要的操作次数越多,因此就有了单调性,可以用二分查找来做。如果我们要将大值降低至 target ,可以计算一下需要多少操作数(每个数大于 target 的数都要尽可能均分),分为以下两种情况:

    若操作数大于 maxOperations ,说明 target 太小了,需要往右搜索,否则需要往左搜索。

  • 那么如何计算操作次数 呢?

    • 对于一个数 x ,如果它小于等于 mid , 那么不用划分。

    • 如果大于 mid ,那么需要进行划分。

      当 x 位于 [ mid + 1 , mid * 2 ] ,需要划分一次,位于 [ mid * 2 + 1 ,mid * 3] ,需要划分两次,因此可以看出需要划分次数为 : (x - 1) / mid 。

收获
  • 二分查找
    能否二分答案的关键在于问题是否具有决策单调性。也即考虑整个数轴,左边一半满足条件,右边不满足;或者左边一半不满足,右边满足。

    通过这道题复习了二分查找。

算法情况
  • 时间复杂度 :O(n log C), 其中 n 是 nums 的长度,C 是数组 nums 中的大值, 不超过 109
  • 空间复杂度:O(1)
    在这里插入图片描述
代码
class Solution {public:
    int minimumSize(vector& nums, int maxOperations) {int left = 1, right = *max_element(nums.begin(), nums.end());
        int res = 0;
        while(left<= right){int mid = (left + right) / 2;
            long long ops = 0;
            for(int num : nums){ops += (num - 1) / mid;
            }
            if(ops<= maxOperations){// 操作次数少,说明mid太大,减小mid
                res = mid;
                right = mid - 1;
            }
            else{// ops >maxOperations
                // mid太小,增大mid
                left = mid + 1;
            }
        }
        return res;
    }
};
参考资料
  1. C++ max_element()的使用

max_element是用来来查询大值所在的第一个位置。(不是下标,比如 [1, 2 , 3 ],会返回 3 )

max_element有两种写法:

  • 第一种是从头迭代器到尾迭代器用自己写的方法去比较,
  • 第二种是直接用它自带的头迭代器到尾迭代器的比较大小。
  1. 二分查找又死循环了?一个视频讲透二分本质!

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


本文标题:【LeetCode】1760.袋子里最少数目的球-创新互联
分享网址:http://cdkjz.cn/article/djoiig.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220