资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

Python中numpy怎样切片-创新互联

小编给大家分享一下Python中numpy怎样切片,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

成都创新互联公司主要从事网站设计制作、成都做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务秦都,十多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18982081108

简介

X[n0,n1]是通过 numpy 库引用二维数组或矩阵中的某一段数据集的一种写法。

类似的,X[n0,n1,n2]表示取三维数组,取N维数组则有N个参数,N-1个逗号分隔。

以二维数组为例:

import numpy as np
X = np.array([[0,1,2,3],[10,11,12,13],[20,21,22,23],[30,31,32,33]])

X 是一个二维数组,维度分别为 0 ,1;为了方便理解多维,采取数中括号的方式 ‘[’ 确定维数,例如:从左往右,第 0 层 [] 表示第 0 维;第 1 层 [] 表示第 1 维;…以此类推。

取元素 X[n0,n1]

这是最基本的情况,表示取 第0维 的第 n0 个元素,继续取 第1维 的第 n1个元素。如 X[2,2] 表示第0维第2个元素[20,21,22,23],然后取其第1维的第2个元素即 22;

切片 X[s0:e0,s1:e1]

这是最通用的切片操作,表示取 第0维 的第 s0 到 e0 个元素,继续取 第1维 的第 s1 到 e1 个元素(左闭右开)。如 X[1:3,1:3] 表示第0维第(1:3)个元素[[10,11,12,13],[20,21,22,23]],然后取其第1维的第(1:3)个元素即 [[11,12],[21,22]];

切片特殊情况 X[:e0,s1:]

特殊情况,即左边从0开始可以省略X[:e0,s1:e1],右边到结尾可以省略X[s0:,s1:e1],取某一维全部元素X[:,s1:e1],事实上和Python 的 序列切片规则是一样的。

常见的 X[:,0] 则表示 第0维取全部,第1维取0号元素;

示例代码

import numpy as np X = np.array([[0,1,2,3],[10,11,12,13],[20,21,22,23],[30,31,32,33]]) # X 是一个二维数组,维度为 0 ,1 # 第 0 层 [] 表示第 0 维;第 1 层 [] 表示第 1 维; # X[n0,n1] 表示第 0 维 取第n0 个元素 ,第 1 维取第 n1 个元素 print(X[1,0]) # X[1:3,1:3] 表示第 0 维 取 (1:3)元素 ,第 1 维取第(1:3) 个元素 print(X[1:3,1:3]) # X[:n0,:n1] 表示第 0 维 取 第0 到 第n0 个元素 ,第 1 维取 第0 到 第n1 个元素 print(X[:2,:2]) # X[:,:n1] 表示第 0 维 取 全部元素 ,第 1 维取 第0 到第n1 个元素 print(X[:,:2]) # X[:,0]) 表示第 0 维 取全部 元素 ,第 1 维取第 0 个元素 print(X[:,0])

输出结果

10 [[11 12] [21 22]] [[ 0  1] [10 11]] [[ 0  1] [10 11] [20 21] [30 31]] [ 0 10 20 30]

看完了这篇文章,相信你对Python中numpy怎样切片有了一定的了解,想了解更多相关知识,欢迎关注创新互联网站制作公司行业资讯频道,感谢各位的阅读!


分享名称:Python中numpy怎样切片-创新互联
浏览地址:http://cdkjz.cn/article/dhhied.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220