小编给大家分享一下如何使用python接口调用已训练好的caffe模型测试分类,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创新互联是一家专注于成都网站制作、成都网站设计、外贸营销网站建设与策划设计,彭山网站建设哪家好?创新互联做网站,专注于网站建设十余年,网设计领域的专业建站公司;建站业务涵盖:彭山等地区。彭山做网站价格咨询:028-86922220训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。
本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel,以及结构参数
:~/caffe/models/bvlc_reference_caffenet/deploy.prototxt相结合,用python接口进行调用。
训练的源代码以及相应的注释如下所示:
# -*- coding: UTF-8 -*- import os import caffe import numpy as np root='/home/zf/caffe/'#指定根目录 deploy=root+'models/bvlc_reference_caffenet/deploy.prototxt'#结构文件 caffe_model=root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' #已经训练好的model dir =root+'examples/images/'#保存测试图片的集合 filelist=[] filenames=os.listdir(dir) for fn in filenames: fullfilename = os.path.join(dir,fn) filelist.append(fullfilename) #filelist.append(fn) def Test(img): #加载模型 net = caffe.Net(deploy,caffe_model,caffe.TEST) # 加载输入和配置预处理 transformer = caffe.io.Transformer({'data':net.blobs['data'].data.shape}) transformer.set_mean('data', np.load('/home/zf/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) transformer.set_transpose('data', (2,0,1)) transformer.set_channel_swap('data', (2,1,0)) transformer.set_raw_scale('data', 255.0) #注意可以调节预处理批次的大小 #由于是处理一张图片,所以把原来的10张的批次改为1 net.blobs['data'].reshape(1,3,227,227) #加载图片到数据层 im = caffe.io.load_image(img) net.blobs['data'].data[...] = transformer.preprocess('data', im) #前向计算 out = net.forward() # 其他可能的形式 : out = net.forward_all(data=np.asarray([transformer.preprocess('data', im)])) #预测分类 print out['prob'].argmax() #打印预测标签 labels = np.loadtxt("/home/zf/caffe/data/ilsvrc12/synset_words.txt", str, delimiter='\t') top_k = net.blobs['prob'].data[0].flatten().argsort()[-1] print 'the class is:',labels[top_k] f=file("/home/zhengfeng/caffe/examples/zf/label.txt","a") f.writelines(img+' '+labels[top_k]+'\n') labels_filename=root +'data/ilsvrc12/synset_words.txt' #循环遍历文件夹root+'examples/images/'下的所有图片 for i in range(0,len(filelist)): img=filelist[i] Test(img)
ps:主要有以下的文件需要说明
待测试的文件夹里面的图片数据为:
最后的输出结果如下:
以下是本人定义的label.txt文件写入的预测的数据:
如果在编译的时候出现import caffe error的话,说明没有导入caffe
Export PYTHONPATH=$PYTHONPATH:/home/zf/caffe/python,如果还是不行,可能是你的caffe的python接口未编译,cd /home/zf/caffe,然后执行make pycaffe,接着再测试。
以上是“如何使用python接口调用已训练好的caffe模型测试分类”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。