资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

如何使用tensorflowDataSet实现高效加载变长文本输入-创新互联

这篇文章给大家分享的是有关如何使用tensorflow DataSet实现高效加载变长文本输入的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

创新互联公司专注为客户提供全方位的互联网综合服务,包含不限于成都网站建设、网站建设、同仁网络推广、成都小程序开发、同仁网络营销、同仁企业策划、同仁品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们大的嘉奖;创新互联公司为所有大学生创业者提供同仁建站搭建服务,24小时服务热线:13518219792,官方网址:www.cdcxhl.com

DataSet是tensorflow 1.3版本推出的一个high-level的api,在1.3版本还只是处于测试阶段,1.4版本已经正式推出。

在网上搜了一遍,发现关于使用DataSet加载文本的资料比较少,官方举的例子只是csv格式的,要求csv文件中所有样本必须具有相同的维度,也就是padding必须在写入csv文件之前做掉,这会增加文件的大小。

经过一番折腾试验,这里给出一个DataSet+TFRecords加载变长样本的范例。

首先先把变长的数据写入到TFRecords文件:

def writedata():
 xlist = [[1,2,3],[4,5,6,8]]
 ylist = [1,2]
 #这里的数据只是举个例子来说明样本的文本长度不一样,第一个样本3个词标签1,第二个样本4个词标签2
 writer = tf.python_io.TFRecordWriter("train.tfrecords")
 for i in range(2):
  x = xlist[i]
  y = ylist[i]
  example = tf.train.Example(features=tf.train.Features(feature={
   "y": tf.train.Feature(int64_list=tf.train.Int64List(value=[y])),
   'x': tf.train.Feature(int64_list=tf.train.Int64List(value=x))
  }))
  writer.write(example.SerializeToString())
 writer.close()

然后用DataSet加载:

feature_names = ['x']
 
def my_input_fn(file_path, perform_shuffle=False, repeat_count=1):
 def parse(example_proto):
  features = {"x": tf.VarLenFeature(tf.int64),
    "y": tf.FixedLenFeature([1], tf.int64)}
  parsed_features = tf.parse_single_example(example_proto, features)
  x = tf.sparse_tensor_to_dense(parsed_features["x"])
  x = tf.cast(x, tf.int32)
  x = dict(zip(feature_names, [x]))
  y = tf.cast(parsed_features["y"], tf.int32)
  return x, y
 
 dataset = (tf.contrib.data.TFRecordDataset(file_path)
    .map(parse))
 if perform_shuffle:
  dataset = dataset.shuffle(buffer_size=256)
 dataset = dataset.repeat(repeat_count)
 dataset = dataset.padded_batch(2, padded_shapes=({'x':[6]},[1])) #batch size为2,并且x按maxlen=6来做padding
 iterator = dataset.make_one_shot_iterator()
 batch_features, batch_labels = iterator.get_next()
 return batch_features, batch_labels
 
next_batch = my_input_fn('train.tfrecords', True)
init = tf.initialize_all_variables()
with tf.Session() as sess:
 sess.run(init)
 for i in range(1):
  xs, y =sess.run(next_batch)
  print(xs['x'])
  print(y)

注意变长的数据TFRecords解析要用VarLenFeature,然后用sparse_tensor_to_dense转换。

感谢各位的阅读!关于“如何使用tensorflow DataSet实现高效加载变长文本输入”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


当前标题:如何使用tensorflowDataSet实现高效加载变长文本输入-创新互联
链接地址:http://cdkjz.cn/article/deicog.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220