资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

使用python实现哈希表、字典、集合操作-创新互联

哈希表

成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的下冶网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

哈希表(Hash Table, 又称为散列表),是一种线性表的存储结构。哈希表由一个直接寻址表和一个哈希函数组成。哈希函数h(k)将元素关键字k作为自变量,返回元素的存储下标。

简单哈希函数:

除法哈希:h(k) = k mod m乘法哈希:h(k) = floor(m(kA mod 1)) 0

假设有一个长度为7的数组,哈希函数h(k) = k mod 7,元素集合{14, 22, 3, 5}的存储方式如下图:

使用python实现哈希表、字典、集合操作

哈希冲突

由于哈希表的大小是有限的,而要存储的值的总数量是无限的,因此对于任何哈希函数,都会出现两个不同的元素映射到同一个位置上的情况,这种情况叫做哈希冲突。

比如:h(k) = k mod 7, h(0) = h(7) = h(14) = ...

解决哈希冲突--开放寻址法

开放寻址法:如果哈希函数返回的位置已经有值,则可以向后探查新的位置来存储这个值

线性探查:如果位置i被占用,则探查i+1, i+2,...二次探查:如果位置i被占用,则探查i+12, i-12, i+22, i-22,...二度哈希:有n个哈希函数,当使用第一个哈希函数h2发生冲突时,则尝试使用h3, h4,...

解决哈希冲突--拉链法

拉链法:哈希表每一个位置都连接一个链表,当冲突发生时,冲突的元素将被加到该位置链表的最后。

使用python实现哈希表、字典、集合操作

哈希表的实现

class Array(object):

 def __init__(self, size=32, init=None):
  self._size = size
  self._items = [init] * size

 def __getitem__(self, index):
  return self._items[index]

 def __setitem__(self, index, value):
  self._items[index] = value

 def __len__(self):
  return self._size

 def clear(self, value=None):
  for i in range(len(self._items)):
   self._items[i] = value

 def __iter__(self):
  for item in self._items:
   yield item


class Slot(object):
 """
 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置)
 hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。

 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。
 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了
 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找
 3.槽正在使用 Slot 节点
 """

 def __init__(self, key, value):
  self.key, self.value = key, value


class HashTable(object):
 UNUSED = None # 没被使用过
 EMPTY = Slot(None, None) # 使用却被删除过

 def __init__(self):
  self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方
  self.length = 0

 @property
 def _load_factor(self):
  # load_factor 超过 0.8 重新分配
  return self.length / float(len(self._table))

 def __len__(self):
  return self.length

 # 进行哈希
 def _hash(self, key):
  return abs(hash(key)) % len(self._table)

 # 查找key
 def _find_key(self, key):
  """
  解释一个 slot 为 UNUSED 和 EMPTY 的区别
  因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了,
  首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。
  然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B,
  第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。
  但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。
  """
  origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素
  _len = len(self._table)
  while self._table[index] is not HashTable.UNUSED:
   if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽
    index = (index * 5 + 1) % _len
    if index == origin_index:
     break
    continue
   if self._table[index].key == key: # 找到了key
    return index
   else:
    index = (index * 5 + 1) % _len # 没有找到继续找下一个位置
    if index == origin_index:
     break

  return None

 # 找能插入的槽
 def _find_slot_for_insert(self, key):
  index = self._hash(key)
  _len = len(self._table)
  while not self._slot_can_insert(index): # 直到找到一个可以用的槽
   index = (index * 5 + 1) % _len
  return index

 # 槽是否能插入
 def _slot_can_insert(self, index):
  return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED

 # in operator,实现之后可以使用 in 操作符判断
 def __contains__(self, key):
  index = self._find_key(key)
  return index is not None

 # 添加元素
 def add(self, key, value):
  if key in self: # update
   index = self._find_key(key)
   self._table[index].value = value
   return False
  else:
   index = self._find_slot_for_insert(key)
   self._table[index] = Slot(key, value)
   self.length += 1
   if self._load_factor >= 0.8:
    self._rehash()
   return True

 # 槽不够时,重哈希
 def _rehash(self):
  old_table = self._table
  newsize = len(self._table) * 2
  self._table = Array(newsize, HashTable.UNUSED)

  self.length = 0

  for slot in old_table:
   if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY:
    index = self._find_slot_for_insert(slot.key)
    self._table[index] = slot
    self.length += 1

 # 获取值
 def get(self, key, default=None):
  index = self._find_key(key)
  if index is None:
   return default
  else:
   return self._table[index].value

 # 移除
 def remove(self, key):
  index = self._find_key(key)
  if index is None:
   raise KeyError()
  value = self._table[index].value
  self.length -= 1
  self._table[index] = HashTable.EMPTY
  return value

 # 遍历
 def __iter__(self):
  for slot in self._table:
   if slot not in (HashTable.EMPTY, HashTable.UNUSED):
    yield slot.key

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


新闻名称:使用python实现哈希表、字典、集合操作-创新互联
分享链接:http://cdkjz.cn/article/ddjhpi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220