这是一个递归函数中的语句。
站在用户的角度思考问题,与客户深入沟通,找到峄城网站设计与峄城网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:做网站、成都网站设计、企业官网、英文网站、手机端网站、网站推广、域名注册、网络空间、企业邮箱。业务覆盖峄城地区。
long fun(int n)
{
if(n==0||n==1)
return 1;
else
return fun(n-1)+fun(n-2);
}
这个递归函数,它是用来计算菲波那契数列第n项的。
前面的 if(n==0||n==1) return 1; 说的是递归结束的条件。就是说菲波那契数列的前二项的值就等于1,
从n=3起,就使用递归的方法来计算fun(n)的值。
比如要计算fun(4),它就等于fun(3)+fun(2);
而fun(3)=fun(2)+fun(1);
fun(2)=fun(1)+fun(0)=1+1=2
所以,它调用fun(2)时就返回函数值2,调用fun(1)时直接返回函数值1,于是就计算出fun(3)的值为2+1=3。
递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1)边界条件:确定递归到何时终止,也称为递归出口。
(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果
汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:
(1)将塔上的n-1个碟子借助塔C先移到塔B上;
(2)把塔A上剩下的一个碟子移到塔C上;
(3)将n-1个碟子从塔B借助塔A移到塔C上。
在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:
(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;
(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;
(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序
三、递归函数的内部执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;
(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;
(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。
上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
程序中给出的函数ff是一个递归函数。主函数调用ff 后即进入函数ff执行,如果n0,n==0或n=1时都将结束函数的执行,否则就递归调用ff函数自身。由于每次递归调用的实参为n-1,即把n-1的值赋予形参n,最后当n-1的值为1时再作递归调用,形参n的值也为1,将使递归终止。然后可逐层退回。
下面我们再举例说明该过程。设执行本程序时输入为5,即求5!。在主函数中的调用语句即为y=ff(5),进入ff函数后,由于n=5,不等于0或1,故应执行f=ff(n-1)*n,即f=ff(5-1)*5。该语句对ff作递归调用即ff(4)。
进行四次递归调用后,ff函数形参取得的值变为1,故不再继续递归调用而开始逐层返回主调函数。ff(1)的函数返回值为1,ff(2)的返回值为1*2=2,ff(3)的返回值为2*3=6,ff(4)的返回值为6*4=24,最后返回值ff(5)为24*5=120。