最近有粉丝反映说,利用clusterProfiler这个包绘制GO富集分析气泡图和柱形图的时候,发现GO条目的名字都重叠在一起了。气泡图 柱形图 这个图别说美观了,简直不忍直视。经过我的认真研究,发现跟R版本有关。
创新互联是专业的清河门网站建设公司,清河门接单;提供成都网站建设、做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行清河门网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
但是该方法存在一个很大的问题,那就是当x轴标签数量很多时,那么就无法通过这样的方法进行解决了。方法二是方法一的逆向思路,既然可以调大画布,那么反过来,我们也可以调小x轴标签字体。
最近小Q在做自然选择分析,分析完之后简单粗暴的对候选基因做了富集分析,并做了展示,比起气泡图,我模仿了另一种作图方式,显示效果更佳。所以想在此分享一下如何用R语言画富集分析示意图(非气泡图)。
在是否需要构建的问题上,我看到徐洲更在 功能注释后如何做富集分析 中提到 “你不需要构建Orgdb,因为Orgdb的用途是进行基因编号和GO/KEGG的转换。
1、单细胞富集分析我最常用的是 分组GSVA ,但最近用到了GO分析,就复习一下GO和KEGG富集分析及绘图。载入无比熟悉的pbmc.3k数据集 (已注释好,数据准备见 monocle )pbmc3k数据集只有1个样本,没办法区分HC和病例组。
2、3 GO富集分析 加载了注释库之后,读取基因列表文件,并使用clusterProfiler的内部函数enrichGO()即可完成GO富集分析。读取基因列表文件,并使用clusterProfiler的内部函数enrichKEGG()即可完成KEGG富集分析。
3、单细胞数据的分组包含不同细胞类型,对照组和实验组,不同时间段的样本等,可以按照不同的分组将表达量矩阵和细胞分组信息提取出来,再进行后续分析 。
4、GO、KEGG富集分析是我们做生信分析较为常用的部分,它可以将基因与功能相联系起来。GO指的是Gene Ontology,是基因功能国际标准分类体系。
5、通常称这种分析为GO、KEGG富集分析。本节视频教程,就让我们带大家学习什么是GO、KEGG富集分析,它们的主要原理是什么,并简单展示使用DAVID进行差异表达基因GO富集分析的操作过程。
6、GO是Gene ontology的缩写,GO数据库分别从功能、参与的生物途径及细胞中的定位对基因产物进行了标准化描述 即对基因产物进行简单注释,通过GO富集分析可以粗略了解差异基因富集在哪些生物学功能、途径或者细胞定位。
最近小Q在做自然选择分析,分析完之后简单粗暴的对候选基因做了富集分析,并做了展示,比起气泡图,我模仿了另一种作图方式,显示效果更佳。所以想在此分享一下如何用R语言画富集分析示意图(非气泡图)。
直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段组成,表示数据分布的情况。 一般用横轴(X轴)表示数据类型,纵轴(Y轴)表示分布(相应值的频数)情况。
R语言绘图系列:标度控制着数据到图形属性的映射,标度将我们的数据转化为视觉上可以感知的东西,比如大小、位置、颜色、形状等。标度也为我们提供了读图时所使用的工具,比如说坐标轴和图例。总的来说,可以称为引导元素。
利用R包rworldmap & rworldxtra来作图。已有的map数据中一个国家对应一个坐标,一个国家边界,利用这些已有数据+用户数据构建新的画图数据(其他新添加的图均是如此)。