Pandas库十分强大,但是对于切片操作iloc, loc和ix,很多人对此十分迷惑,因此本篇博客利用例子来说明这3者之一的区别和联系,尤其是iloc和loc。
创新互联建站是一家集网站建设,夏邑企业网站建设,夏邑品牌网站建设,网站定制,夏邑网站建设报价,网络营销,网络优化,夏邑网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。对于ix,由于其操作有些复杂,我在另外一篇博客专门详细介绍ix。
首先,介绍这三种方法的概述:
接下来,举几个例子说明:
1 loc
其实,对于loc始终坚持一个原则:loc是基于label进行索引的!
import pandas as pd df1 = pd.DataFrame(data= [[1, 2, 3],[4, 5, 6], [7, 8, 9]], index=[0, 1, 2], columns=['a','b','c']) df2 = pd.DataFrame(data= [[1, 2, 3],[4, 5, 6], [7, 8, 9]], index=['e', 'f', 'g'], columns=['a','b','c']) print(df1) print(df2) ''' df1: a b c 0 1 2 3 1 4 5 6 2 7 8 9 df2: a b c e 1 2 3 f 4 5 6 g 7 8 9 ''' # loc索引行,label是整型数字 print(df1.loc[0]) ''' a 1 b 2 c 3 Name: 0, dtype: int64 ''' # loc索引行,label是字符型 print(df2.loc['e']) ''' a 1 b 2 c 3 Name: 0, dtype: int64 ''' # 如果对df2这么写:df2.loc[0]会报错,因为loc索引的是label,显然在df2的行的名字中没有叫0的。 print(df2.loc[0]) ''' TypeError: cannot do slice indexing onwith these indexers [0] of ''' # loc索引多行数据 print(df1.loc[1:]) ''' a b c 1 4 5 6 2 7 8 9 ''' # loc索引多列数据 print(df1.loc[:,['a', 'b']]) ''' a b 0 1 2 1 4 5 2 7 8 ''' # df1.loc[:,0:2]这么写报错, 因为loc索引的是label,显然在df1的列的名字中没有叫0,1和2的。 print(df1.loc[:,0:2]) ''' TypeError: cannot do slice indexing on with these indexers [0] of ''' # locs索引某些行某些列 print(df1.loc[0:2, ['a', 'b']]) ''' a b 0 1 2 1 4 5 2 7 8 '''
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。