从品牌网站建设到网络营销策划,从策略到执行的一站式服务
1、给你一个示例程序,也是做积分,是y=x*x的[0,2]的定积分。
在珙县等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、成都做网站 网站设计制作按需制作,公司网站建设,企业网站建设,品牌网站设计,网络营销推广,成都外贸网站建设,珙县网站建设费用合理。
2、对于一重定积分来说其求解可以使用梯形法进行求解,计算公式如下所示:其中,f(x)为被积函数,为横坐标的两点间的间隔,越小,则计算出的结果越精确。
3、这两种近似求值的精度随分割个数n的增加而增加,对于相同的n个数,相对来说,梯形法的精度比矩形法的要高一些。例:求函数f(x)=x*x+2*x+1在【0,2】上的定积分。
4、基本是这样的,用梯形发求定积分,对应于一个积分式就要有一段程序,不过你可以改变程序的一小部分来改变你所要求的积分式。
5、{ double sum=0;int i;for(i=0; iN; i++){ sum += sin((double)(i)/N)/N;} printf(%lf\n%lf,sum,1-cos(1));} N后面的0有点多了,不过这个数刚好能精确到小数点后6位。
给你一个示例程序,也是做积分,是y=x*x的[0,2]的定积分。
基本是这样的,用梯形发求定积分,对应于一个积分式就要有一段程序,不过你可以改变程序的一小部分来改变你所要求的积分式。
这是辛普森积分法。给你写了fun_1( ),fun_2(),请自己添加另外几个被积函数。调用方法 t=fsimp(a,b,eps,fun_i);a,b --上下限,eps -- 迭代精度要求。
1、这是辛普森积分法。给你写了fun_1( ),fun_2(),请自己添加另外几个被积函数。调用方法 t=fsimp(a,b,eps,fun_i);a,b --上下限,eps -- 迭代精度要求。
2、例:求函数f(x)=x*x+2*x+1在【0,2】上的定积分。
3、(x*x)在(0,1)上定积分为%lf\n,fun(0,1,1000000));//区间数自己设越大值越精确 } 结果:数学分析:f(x)=x^2=x*x;定积分:x*x*x/3+c(常数)在区间(0,1)上定积分:1/3=0.333333 结果正确。
4、void main(){ double sum=0;int i;for(i=0; iN; i++){ sum += sin((double)(i)/N)/N;} printf(%lf\n%lf,sum,1-cos(1));} N后面的0有点多了,不过这个数刚好能精确到小数点后6位。
5、积分分为两种,数值积分,公式积分。公式积分:部分函数可以直接用公式求得其不定积分函数。C语言中可以直接用积分公式写出其积分函数。数值积分:按照积分的定义,设置积分范围的步长,用梯形面积累加求得其积分。
成都网站建设公司地址:成都市青羊区太升南路288号锦天国际A座10层 建设咨询028-86922220
成都快上网科技有限公司-四川网站建设设计公司 | 蜀ICP备19037934号 Copyright 2020,ALL Rights Reserved cdkjz.cn | 成都网站建设 | © Copyright 2020版权所有.
专家团队为您提供成都网站建设,成都网站设计,成都品牌网站设计,成都营销型网站制作等服务,成都建网站就找快上网! | 成都网站建设哪家好? | 网站建设地图