资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

kerastensorflow如何实现在python下多进程运行-创新互联

这篇文章主要介绍了keras tensorflow如何实现在python下多进程运行,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

成都创新互联长期为数千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为广水企业提供专业的成都网站设计、网站制作、外贸营销网站建设广水网站改版等技术服务。拥有10余年丰富建站经验和众多成功案例,为您定制开发。

如下所示:

 from multiprocessing import Process
import os
 
 
def training_function(...):
 import keras # 此处需要在子进程中
 ...
 
if __name__ == '__main__':
 p = Process(target=training_function, args=(...,))
 p.start()

原文地址:https://stackoverflow.com/questions/42504669/keras-tensorflow-and-multiprocessing-in-python

1、DO NOT LOAD KERAS TO YOUR MAIN ENVIRONMENT. If you want to load Keras / Theano / TensorFlow do it only in the function environment. E.g. don't do this:

import keras
 
def training_function(...):
 ...

but do the following:

def training_function(...):
 import keras
 ...

Run work connected with each model in a separate process: I'm usually creating workers which are making the job (like e.g. training, tuning, scoring) and I'm running them in separate processes. What is nice about it that whole memory used by this process is completely freedwhen your process is done. This helps you with loads of memory problems which you usually come across when you are using multiprocessing or even running multiple models in one process. So this looks e.g. like this:

def _training_worker(train_params):
 import keras
 model = obtain_model(train_params)
 model.fit(train_params)
 send_message_to_main_process(...)
 
def train_new_model(train_params):
 training_process = multiprocessing.Process(target=_training_worker, args = train_params)
 training_process.start()
 get_message_from_training_process(...)
 training_process.join()

Different approach is simply preparing different scripts for different model actions. But this may cause memory errors especially when your models are memory consuming. NOTE that due to this reason it's better to make your execution strictly sequential.

感谢你能够认真阅读完这篇文章,希望小编分享的“keras tensorflow如何实现在python下多进程运行”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页标题:kerastensorflow如何实现在python下多进程运行-创新互联
浏览地址:http://cdkjz.cn/article/dcdoso.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220