资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python中如何提高频繁写入文件的速度-创新互联

这篇文章主要介绍python中如何提高频繁写入文件的速度,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站设计制作、网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的铁山港网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

问题背景:有一批需要处理的文件,对于每一个文件,都需要调用同一个函数进行处理,相当耗时。

有没有加速的办法呢?当然有啦,比如说你将这些文件分成若干批,每一个批次都调用自己写的python脚本进行处理,这样同时运行若干个python程序也可以进行加速。

有没有更简单的方法呢?比如说,我一个运行的一个程序里面,同时分为多个线程,然后进行处理?

大概思路:将这些个文件路径的list,分成若干个,至于分成多少,要看自己cpu核心有多少,比如你的cpu有32核的,理论上就可以加速32倍。

代码如下:

# -*-coding:utf-8-*-

import numpy as np

from glob import glob

import math

import os

import torch

from tqdm import tqdm

import multiprocessing

label_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/label.txt'

file_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/distortion_image'

save_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/flow_field'

r_d_max = 128

image_index = 0

txt_file = open(label_path)

file_list = txt_file.readlines()

txt_file.close()

file_label = {}

for i in file_list:

  i = i.split()

  file_label[i[0]] = i[1]

r_d_max = 128

eps = 1e-32

H = 256

W = 256

def generate_flow_field(image_list):

  for image_file_path in ((image_list)):

    pixel_flow = np.zeros(shape=tuple([256, 256, 2])) # 按照pytorch中的grid来写

    image_file_name = os.path.basename(image_file_path)

    # print(image_file_name)

    k = float(file_label[image_file_name])*(-1)*1e-7

    # print(k)

    r_u_max = r_d_max/(1+k*r_d_max**2) # 计算出畸变校正之后的对角线的理论长度

    scale = r_u_max/128 # 将这个长度压缩到256的尺寸,会有一个scale,实际上这里写128*sqrt(2)可能会更加直观

    for i_u in range(256):

      for j_u in range(256):

        x_u = float(i_u - 128)

        y_u = float(128 - j_u)

        theta = math.atan2(y_u, x_u)

        r = math.sqrt(x_u ** 2 + y_u ** 2)

        r = r * scale # 实际上得到的r,即没有resize到256×256的图像尺寸size,并且带入公式中

        r_d = (1.0 - math.sqrt(1 - 4.0 * k * r ** 2)) / (2 * k * r + eps) # 对应在原图(畸变图)中的r

        x_d = int(round(r_d * math.cos(theta)))

        y_d = int(round(r_d * math.sin(theta)))

        i_d = int(x_d + W / 2.0)

        j_d = int(H / 2.0 - y_d)

        if i_d < W and i_d >= 0 and j_d < H and j_d >= 0: # 只有求的的畸变点在原图中的时候才进行赋值

          value1 = (i_d - 128.0)/128.0

          value2 = (j_d - 128.0)/128.0

          pixel_flow[j_u, i_u, 0] = value1 # mesh中存储的是对应的r的比值,在进行畸变校正的时候,给定一张这样的图,进行找像素即可

          pixel_flow[j_u, i_u, 1] = value2

# 保存成array格式

    saved_image_file_path = os.path.join(save_path, image_file_name.split('.')[0] + '.npy')

    pixel_flow = pixel_flow.astype('f2') # 将数据的格式转换成float16类型, 节省空间

    # print(saved_image_file_path)

    # print(pixel_flow)

    np.save(saved_image_file_path, pixel_flow)

  return

if __name__ == '__main__':

  file_list = glob(file_path + '/*.JPEG')

  m = 32

  n = int(math.ceil(len(file_list) / float(m))) # 向上取整

  result = []

  pool = multiprocessing.Pool(processes=m) # 32进程

  for i in range(0, len(file_list), n):

    result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],)))

  pool.close()

  pool.join()

在上面的代码中,函数

generate_flow_field(image_list)

需要传入一个list,然后对于这个list进行操作,之后对操作的结果进行保存

所以,只需要将你需要处理的多个文件,切分成尽量等大小的list,然后再对每一个list,开一个线程进行处理即可

上面的主函数:

if __name__ == '__main__':

  file_list = glob(file_path + '/*.JPEG') # 将文件夹下所有的JPEG文件列成一个list

  m = 32 # 假设CPU有32个核心

  n = int(math.ceil(len(file_list) / float(m))) # 每一个核心需要处理的list的数目

  result = []

  pool = multiprocessing.Pool(processes=m) # 开32线程的线程池

  for i in range(0, len(file_list), n):

    result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理

  pool.close() # 处理结束之后,关闭线程池

  pool.join()

主要是这样的两行代码,一行是

pool = multiprocessing.Pool(processes=m) # 开32线程的线程池

用来开辟线程池

另外一行是

result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理

对于线程池,用apply_async()同时跑generate_flow_field这个函数,传入的参数是:file_list[i: i+n]

实际上apply_async()这个函数的作用是所有的线程同时跑,速度是比较快的。

扩展:

Python文件处理之文件写入方式与写缓存来提高速度和效率

Python的open的写入方式有:

write(str):将str写入文件

writelines(sequence of strings):写多行到文件,参数为可迭代对象

f = open('blogCblog.txt', 'w') #首先先创建一个文件对象,打开方式为w
f.writelines('123456') #用readlines()方法写入文件

运行上面结果之后,可以看到blogCblog.txt文件有123456内容,这里需要注意的是,mode为‘w'模式(写模式),再来看下面代码:

f = open('blogCblog.txt', 'w') #首先先创建一个文件对象,打开方式为w
f.writelines(123456) #用readlines()方法写入文件

运行上面代码之后会报一个TypeError,这是因为writelines传入的参数并不是一个可迭代的对象。

以上是“python中如何提高频繁写入文件的速度”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页标题:python中如何提高频繁写入文件的速度-创新互联
网站网址:http://cdkjz.cn/article/csjipp.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220