代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、网络空间、营销软件、网站建设、永丰网站维护、网站推广。# -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch import nn from torch.utils.data import DataLoader from torchvision import transforms as tfs from torchvision.datasets import MNIST #定义数据 data_tf = tfs.Compose([ tfs.ToTensor(), tfs.Normalize([0.5], [0.5]) ]) train_set = MNIST('E:/data', train=True, transform=data_tf, download=True) test_set = MNIST('E:/data', train=False, transform=data_tf, download=True) train_data = DataLoader(train_set, 64, True, num_workers=4) test_data = DataLoader(test_set, 128, False, num_workers=4) #定义模型 class rnn_classify(nn.Module): def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2): super(rnn_classify, self).__init__() self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果 def forward(self, x): #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28) x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28) x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28) out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature) out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature) out = self.classifier(out) #得到分类结果 return out net = rnn_classify() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adadelta(net.parameters(), 1e-1) #定义训练过程 def get_acc(output, label): total = output.shape[0] _, pred_label = output.max(1) num_correct = (pred_label == label).sum().item() return num_correct / total def train(net, train_data, valid_data, num_epochs, optimizer, criterion): if torch.cuda.is_available(): net = net.cuda() prev_time = datetime.datetime.now() for epoch in range(num_epochs): train_loss = 0 train_acc = 0 net = net.train() for im, label in train_data: if torch.cuda.is_available(): im = Variable(im.cuda()) # (bs, 3, h, w) label = Variable(label.cuda()) # (bs, h, w) else: im = Variable(im) label = Variable(label) # forward output = net(im) loss = criterion(output, label) # backward optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_acc += get_acc(output, label) cur_time = datetime.datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = "Time %02d:%02d:%02d" % (h, m, s) if valid_data is not None: valid_loss = 0 valid_acc = 0 net = net.eval() for im, label in valid_data: if torch.cuda.is_available(): im = Variable(im.cuda()) label = Variable(label.cuda()) else: im = Variable(im) label = Variable(label) output = net(im) loss = criterion(output, label) valid_loss += loss.item() valid_acc += get_acc(output, label) epoch_str = ( "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data), valid_loss / len(valid_data), valid_acc / len(valid_data))) else: epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data))) prev_time = cur_time print(epoch_str + time_str) train(net, train_data, test_data, 10, optimizer, criterion)