资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

稀疏矩阵的压缩存储与转置-创新互联

稀疏矩阵:矩阵中大多数元素为0的矩阵(本文以行序为主序)

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、雅安服务器托管、营销软件、网站建设、晋中网站维护、网站推广。

稀疏矩阵的三元组表述法:

        稀疏矩阵的压缩存储与转置

类型结构:

template 
struct Triple
{
	int _row;
	int _col;
	T _value;
};

template 
class SparseMatrix
{
public:
	SparseMatrix::SparseMatrix();
	SparseMatrix(const T* array, size_t row, size_t col, const T& invalid);
	~SparseMatrix();
	void Display()const;
	SparseMatrix Transport()const;
	SparseMatrix FastTransport()const;
protected:
	vector> _array;
	size_t _rowCount;
	size_t _colCount;
	T _invalid;
};

代码实现压缩存储:

//稀疏矩阵
template 
SparseMatrix::SparseMatrix(){}
template 
SparseMatrix::SparseMatrix(const T* array, size_t row, size_t col, const T& invalid)
:_rowCount(row), _colCount(col), _invalid(invalid)
{
	assert(array);
	for (size_t i = 0; i < row; ++i)
	{
		for (size_t j = 0; j < col; ++j)
		{
			if (array[i*col + j] != invalid)
			{
				this->_array.push_back({ i, j, array[i*col + j] });
			}
		}
	}
}
template 
SparseMatrix::~SparseMatrix()
{}
template 
void SparseMatrix::Display()const
{
	size_t size = this->_array.size();
	size_t iCount = 0;
	for (size_t i = 0; i < this->_rowCount; ++i)
	{
		for (size_t j = 0; j < this->_colCount; ++j)
		{
			if (iCount < size && i == this->_array[iCount]._row && j == this->_array[iCount]._col)
			{
				cout << this->_array[iCount]._value << " ";
				++iCount;
			}
			else
			{
				cout << this->_invalid << " ";
			}
		}
		cout << endl;
	}
}

稀疏矩阵的转置:

1)列序递增转置法:找出第i行全部元素:从头到尾扫描三元组表A,找出其中所有_col==i的三元组,转置后放入三元组表B中。代码实现如下:

template 
SparseMatrix SparseMatrix::Transport()const
{
	SparseMatrix ret;
	ret._rowCount = this->_colCount;
	ret._colCount = this->_rowCount;
	ret._invalid = this->_invalid;
	size_t size = this->_array.size();
	for (size_t col = 0; col < this->_colCount; ++col)
	{
		for (size_t iCount = 0; iCount < size; ++iCount)
		{
			if (this->_array[iCount]._col == col)
			{
				ret._array.push_back({ this->_array[iCount]._col, this->_array[iCount]._row, 
									this->_array[iCount]._value });
			}
		}
	}
	return ret;
}

2)一次定位快速转置法

在方法1中为了使转置后矩阵的三元组表B仍按行序递增存放,必须多次扫描被转置的矩阵的三元组表A。为了能将被转置三元组表A的元素一次定位到三元组B的正确位置上,需要预先计算以下数据:

    i)待转置矩阵三元组表A每一列中非0元素的总个数,即转置后矩阵三元组元素B的每一行的非0元素总个数

    ii)待转置矩阵每一列中第一个非0元素在三元组表B中的正确位置,即转置后矩阵每一行中第一个非0元素在三元组B中的正确位置

    为此,需要设两个数组分别为num[] 和 pos[] ,其中num[col]用来存放三元组表A第col列中非0元素元素总个数,pos[col]用来存放转置前三元组表A中第col列中第一个非0元素在三元组表B中的存储位置。

num[col]的计算方法:将三元组表A扫描一遍,对于其中列号为col的元素,给相应的num数组中下标为col的元素加1.

pos[col]的计算方法:

    i)pos[0] = 0,表示三元组表A中,列值为0的第一个非0元素在三元组表B中的下标值。

    ii)pos[col] = pos[col - 1] + num[col - 1],其中1<=col

eg:

0  1  9  0  0  0  0

0  0  0  0  0  0  0

3  0  0  0  0  4  0

0  0  2  0  0  0  0

0  8  0  0  0  0  0

 5  0  0  7  0  0  0

col0123456
num[col]2221010
pos[col]0246778

代码实现:

template 
SparseMatrix SparseMatrix::Transport()const
{
	SparseMatrix ret;
	ret._rowCount = this->_colCount;
	ret._colCount = this->_rowCount;
	ret._invalid = this->_invalid;
	size_t size = this->_array.size();
	for (size_t col = 0; col < this->_colCount; ++col)
	{
		for (size_t iCount = 0; iCount < size; ++iCount)
		{
			if (this->_array[iCount]._col == col)
			{
				ret._array.push_back({ this->_array[iCount]._col, this->_array[iCount]._row, 
									this->_array[iCount]._value });
			}
		}
	}
	return ret;
}
template 
SparseMatrix SparseMatrix::FastTransport()const
{
	SparseMatrix ret;
	ret._rowCount = this->_colCount;
	ret._colCount = this->_rowCount;
	ret._invalid = this->_invalid;
	size_t size = this->_array.size();	
	ret._array.resize(size);
	vector num(this->_colCount);
	vector pos(this->_colCount); //pos[i] = pos[i-1]+num[i-1] i>0
	for (size_t i = 0; i < size; ++i)
	{
		++num[this->_array[i]._col];
	}
	for (size_t col = 1; col < this->_colCount; ++col)
	{
		pos[col] = pos[col - 1] + num[col - 1];
	}
	for (size_t i = 0; i < size; ++i)
	{
		ret._array[pos[this->_array[i]._col]++] = { this->_array[i]._col, this->_array[i]._row, this->_array[i]._value };
	}

	return ret;
}

运行结果:

稀疏矩阵的压缩存储与转置

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


分享文章:稀疏矩阵的压缩存储与转置-创新互联
标题来源:http://cdkjz.cn/article/csggps.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220