从品牌网站建设到网络营销策划,从策略到执行的一站式服务
最近听了张江老师的深度学习课程,用Pytorch实现神经网络预测,之前做Titanic生存率预测的时候稍微了解过Tensorflow,听说Tensorflow能做的Pyorch都可以做,而且更方便快捷,自己尝试了一下代码的逻辑确实比较简单。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:申请域名、网站空间、营销软件、网站建设、雷州网站维护、网站推广。Pytorch涉及的基本数据类型是tensor(张量)和Autograd(自动微分变量),对于这些概念我也是一知半解,tensor和向量,矩阵等概念都有交叉的部分,下次有时间好好补一下数学的基础知识,不过现阶段的任务主要是应用,学习掌握思维和方法即可,就不再深究了。tensor和ndarray可以相互转换,python的numpy库中的命令也都基本适用。
一些基本的代码:
import torch #导入torch包 x = torch.rand(5, 3) #产生一个5*3的tensor,在 [0,1) 之间随机取值 y = torch.ones(5, 3) #产生一个5*3的Tensor,元素都是1 #和numpy的命令一致 #tensor的运算 z = x + y #两个tensor可以直接相加 q = x.mm(y.transpose(0, 1)) #x乘以y的转置 mm为矩阵的乘法,矩阵相乘必须某一个矩阵的行与另一个矩阵的列相等 ##Tensor与numpy.ndarray之间的转换 import numpy as np #导入numpy包 a = np.ones([5, 3]) #建立一个5*3全是1的二维数组(矩阵) b = torch.from_numpy(a) #利用from_numpy将其转换为tensor c = torch.FloatTensor(a) #另外一种转换为tensor的方法,类型为FloatTensor,还可以使LongTensor,整型数据类型 b.numpy() #从一个tensor转化为numpy的多维数组 from torch.autograd import Variable #导入自动梯度的运算包,主要用Variable这个类 x = Variable(torch.ones(2, 2), requires_grad=True) #创建一个Variable,包裹了一个2*2张量,将需要计算梯度属性置为True
成都网站建设公司地址:成都市青羊区太升南路288号锦天国际A座10层 建设咨询028-86922220
成都快上网科技有限公司-四川网站建设设计公司 | 蜀ICP备19037934号 Copyright 2020,ALL Rights Reserved cdkjz.cn | 成都网站建设 | © Copyright 2020版权所有.
专家团队为您提供成都网站建设,成都网站设计,成都品牌网站设计,成都营销型网站制作等服务,成都建网站就找快上网! | 成都网站建设哪家好? | 网站建设地图