这篇文章主要为大家展示了“tensorflow如何输出权重值和偏差”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“tensorflow如何输出权重值和偏差”这篇文章吧。
创新互联公司是一家集网站建设,重庆企业网站建设,重庆品牌网站建设,网站定制,重庆网站建设报价,网络营销,网络优化,重庆网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。创新互联建站专注于肃州网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供肃州营销型网站建设,肃州网站制作、肃州网页设计、肃州网站官网定制、重庆小程序开发公司服务,打造肃州网络公司原创品牌,更为您提供肃州网站排名全网营销落地服务。使用tensorflow 训练模型时,我们可以使用 tensorflow自带的 Save模块 tf.train.Saver()来保存模型,使用方式很简单 就是在训练完模型后,调用saver.save()即可
saver = tf.train.Saver(write_version=tf.train.SaverDef.V2) saver.save(sess, save_dir+"crfmodel.ckpt", global_step=0)
重新载入模型
saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.restore_model) saver.restore(sess, ckpt.model_checkpoint_path)
但是这种方式保存的模型中包含特别多的信息,使保存的模型很大,其实里面有很多不是我们想要的.我们就想要里面最重要的权重信息和偏差等等数据,然后再自己写解密代码,就可以把模型应用于其他的平台,比如安卓手机.
那么我们可以使用下面的方式获取训练后的权重和偏移,
ww, bb = sess.run([self.W,self.b])
其中W,和b都是 Tensor类型的数据
with tf.name_scope('weights'): self.W = tf.get_variable( shape=[self.feat_size, self.nb_classes], initializer=tf.truncated_normal_initializer(stddev=0.01), name='weights' # ,regularizer=tf.contrib.layers.l1_regularizer(0.1) ) with tf.name_scope('biases'): self.b = tf.get_variable( shape=[self.nb_classes], initializer=tf.truncated_normal_initializer(stddev=0.01), name='bias' )
tensorflow 输出权重 到csv或txt
import numpy as np W_val, b_val = sess.run([weights_tensor, biases_tensor]) np.savetxt("W.csv", W_val, delimiter=",") np.savetxt("b.csv", b_val, delimiter=",")
以上是“tensorflow如何输出权重值和偏差”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。