资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

docker挂载NVIDIA显卡如何运行pytorch-创新互联

小编给大家分享一下docker挂载NVIDIA显卡如何运行pytorch,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联公司服务项目包括章贡网站建设、章贡网站制作、章贡网页制作以及章贡网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,章贡网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到章贡省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

  主机运行环境

$ uname -a
Linux CentOS 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
$ cat /usr/local/cuda/version.txt
CUDA Version 8.0.61
$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR   6
#define CUDNN_MINOR   0
#define CUDNN_PATCHLEVEL 21
#define CUDNN_VERSION  (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
# NVIDIA 1080ti

一、关于GPU的挂载

1. 在docker运行时指定device挂载

  先查看一下有哪些相关设备

$ ls -la /dev | grep nvidia
crw-rw-rw-  1 root root  195,  0 Nov 15 13:41 nvidia0
crw-rw-rw-  1 root root  195,  1 Nov 15 13:41 nvidia1
crw-rw-rw-  1 root root  195, 255 Nov 15 13:41 nvidiactl
crw-rw-rw-  1 root root  242,  0 Nov 15 13:41 nvidia-uvm
crw-rw-rw-  1 root root  242,  1 Nov 15 13:41 nvidia-uvm-tools

  电脑上装了两个显卡。我需要运行pytorch,dockerhub中pytorch官方镜像没有gpu支持,所以只能先pull一个anaconda镜像试试,后面可以编排成Dockerfile。

$ docker run -it -d --rm --name pytorch -v /home/qiyafei/pytorch:/mnt/home --privileged=true --device /dev/nvidia-uvm:/dev/nvidia-uvm --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl okwrtdsh/anaconda3 bash

  okwrtdsh的镜像似乎是针对他们实验室GPU环境的,有点过大了,不过勉强运行一下还是可以的。在容器内部还需要

安装pytorch:

$ conda install pytorch torchvision -c pytorch

  这里运行torch成功,但是加载显卡失败了,可能还是因为驱动不匹配的原因吧,需要重新安装驱动,暂时不做此尝试; 

二、通过nvidia-docker在docker内使用显卡

docker挂载NVIDIA显卡如何运行pytorch

详细信息:https://github.com/NVIDIA/nvidia-docker

(1)安装nvidia-docker

  nvidia-docker其实是docker引擎的一个应用插件,专门面向NVIDIA GPU,因为docker引擎是不支持NVIDIA驱动的,安装插件后可以在用户层上直接使用cuda。具体看上图。这个图很形象,docker引擎的运行机制也表现出来了,就是在系统内核之上通过cgroup和namespace虚拟出一个容器OS的用户空间,我不清楚这是否运行在ring0上,但是cuda和应用确实可以使用了(虚拟化的问题,如果关心此类问题可以了解一些关于docker、kvm等等虚拟化的实现方式,目前是系统类比较火热的话题)

  下载rpm包:https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm

  这里也可以通过添加apt或者yum sourcelist的方式进行安装,但是我没有root权限,而且update容易引起docker重启,如果不是实验室的个人环境不推荐这么做,防止破坏别人正在运行的程序(之前公司一个小伙子就是在阿里云上进行了yum update,结果导致公司部分业务停了一个上午)。

$ sudo rpm -i nvidia-docker-1.0.1-1.x86_64.rpm && rm nvidia-docker-1.0.1-1.x86_64.rpm
$ sudo systemctl start nvidia-docker

(2)容器测试

  我们还需要NVIDIA官方提供的docker容器nvidia/cuda,里面已经编译安装了CUDA和CUDNN,或者直接run,缺少image的会自动pull。

$ docker pull nvidia/cuda
$ nvidia-docker run --rm nvidia/cuda nvidia-smi

   在容器内测试是可以成功使用nvidia显卡的:

docker挂载NVIDIA显卡如何运行pytorch

(3)合适的镜像或者自制dockerfile

合适的镜像:这里推荐Floydhub的pytorch,注意对应的cuda和cudnn版本。

docker pull floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22
nvidia-docker run -ti -d --rm floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22 bash

docker挂载NVIDIA显卡如何运行pytorch

自制dockerfile

  首先,我们需要把要装的东西想清楚:

  1. 基础镜像肯定是NVIDIA官方提供的啦,最省事,不用装cuda和cudnn了;

  2. vim、git、lrzsz、ssh这些肯定要啦;

  3. anaconda、pytorch肯定要啦;

  所以需要准备好国内源source.list,否则安装速度很慢。

deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

  下载anaconda的地址:https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh,这里直接在Dockerfile里下了,具体如下:

$ vim Dockerfile
FROM nvidia/cuda
LABEL author="qyf"
ENV PYTHONIOENCODING=utf-8
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak
ADD $PWD/sources.list /etc/apt/sources.list
RUN apt-get update --fix-missing && \
  apt-get install -y vim net-tools curl wget git bzip2 ca-certificates libglib2.0-0 libxext6 libsm6 libxrender1 mercurial subversion apt-transport-https software-properties-common
RUN apt-get install -y openssh-server -y
RUN echo 'root:passwd' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -i 's/#PasswordAuthentication yes/PasswordAuthentication yes/' /etc/ssh/sshd_config
RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && wget --quiet https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh -O ~/anaconda.sh && /bin/bash ~/anaconda.sh -b -p /opt/conda && rm ~/anaconda.sh
RUN apt-get install -y grep sed dpkg && \
  TINI_VERSION=`curl https://github.com/krallin/tini/releases/latest | grep -o "/v.*\"" | sed 's:^..\(.*\).$:\1:'` && \
  curl -L "https://github.com/krallin/tini/releases/download/v${TINI_VERSION}/tini_${TINI_VERSION}.deb"; > tini.deb && \
  dpkg -i tini.deb && \
  rm tini.deb && \
  apt-get clean
ENV PATH /opt/conda/bin:$PATH
RUN conda install pytorch torchvision -c pytorch -y
ENTRYPOINT [ "/usr/bin/tini", "--" ]
CMD [ "/bin/bash" ]

  通过docker build构造镜像:

docker build -t pytorch/cuda8 ./

  运行成功调用cuda。 

docker挂载NVIDIA显卡如何运行pytorch  

三、关于一些bug

  这里有部分debian的配置,我照着dockerhub上anaconda镜像抄的,这里就不再配置了,反正跑起来后有镜像也可以用。系统随后可能会出现错误:

kernel:unregister_netdevice: waiting for lo to become free. Usage count = 1

docker挂载NVIDIA显卡如何运行pytorchdocker挂载NVIDIA显卡如何运行pytorch  

  这个小哥给出了一个解决方案,至少他给出的错误原因我是相信的:是由内核的TCP套接字错误引发的。这里我给出一些思考,关于上面的结构图,在显卡上,通过nvidia-docker,docker之上的容器可以使用到底层显卡(驱动显然是在docker之下的),而TCP套接字,我猜测也是这种使用方法,而虚拟出来的dockerOS,应该是没有权限来访问宿主机内核的,至少内核限制了部分权限。

以上是“docker挂载NVIDIA显卡如何运行pytorch”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:docker挂载NVIDIA显卡如何运行pytorch-创新互联
本文网址:http://cdkjz.cn/article/ceeidp.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220